Abstract

In the present work, the fracture toughness (KIC) of full-depth (FD) fiber-reinforced concrete (FRC) and layered functionally graded concrete (FGC) matrix cracked (MC) beams has been determined by the equivalent relationships of the two-parameter fracture model (ETPFM). Forty-eight MC-FGC and MC-FD FRC beam specimens with span-depth ratios (L/d) equal 4, 5, and 6 were tested under the 3PB configuration. The MC length-depth ratio (ao/d) remained constant equal to one-third. All FRC beams have the same constitutes materials with hooked-end steel fiber volume fraction equals 1%. The FGC beams are composed of three equal layers, i.e., FRC in the bottom layer at the tension side, normal strength concrete (NSC) at the middle layer, and high strength concrete at the upper layer in the compression side. The results showed that the predicted values of KIC obtained from ETPFM are considered logic according to the maximum size of the non-damaged defect concept. The crack mouth opening displacement estimated from ETPFM showed acceptable values close to the present experimental results. The KIC values calculated within the presence of fibers in front of and through the MC for FRC beam specimens having 1% SFs is more than twice the value of NSC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.