Abstract

The influence of microstructural variations on the fracture toughness of two tool steels having compositions (wt-%) lC–4Cr–5Mo–2V–6W (AISI M2 high-speed steel) and 0·35C–5Cr–1·5Mo;amp;#x2013;1V (AISI H13 hot-work steel) was investigated. In the as-hardened condition, the H13 steel has a higher fracture toughness than M2 steel, and the latter steel is harder. In the tempered condition, the H13 steel is again softer and has a higher fracture toughness than M2. There is a decrease in fracture toughness and an increase in hardness when the austenitizing temperature is above I050°C for M2 steel and above 1100°C for H13 steel, in both the as hardened and hardened and tempered conditions. The fracture toughness of both steels was enhanced by reducing the grain size and increasing the overall carbide volume in the matrix. The steel samples of average grain diameter ≥40μm exhibit 2–3 MN m −3/2 lower fracture toughness than samples of average grain diameter ≤15 μm. A high content of retained austenite appears to raise the fracture toughness of as-hardened M2 steel. Tempering improved the fracture toughness of M2 and H13 steels. The present results are explained using observations of changes in the microstructure and the modes of fracture.MST/468

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call