Abstract

We conducted fracture toughness testing on five types of commercially manufactured steel with different ductile-to-brittle transition temperatures. This was performed using specimens of different sizes and shapes, including the precracked Charpy-type (PCCv), 0.4T-CT, 1T-CT, and miniature compact tension specimens (0.16T-CT). Our objective was to investigate the applicability of 0.16T-CT specimens to fracture toughness evaluation by the master curve method for reactor pressure vessel (RPV) steels. The reference temperature (To) values determined from the 0.16T-CT specimens were overall in good agreement with those determined from the 1T-CT specimens. The scatter of the 1T-equivalent fracture toughness values obtained from the 0.16T-CT specimens was equivalent to that obtained from the other larger specimens. Furthermore, we examined the loading rate effect on To for the 0.16T-CT specimens within the quasi-static loading range prescribed by ASTM E1921. The higher loading rate gave rise to a slightly higher To, and this dependency was almost the same for the larger specimens. We suggested an optimum test temperature on the basis of the Charpy transition temperature for determining To using the 0.16T-CT specimens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call