Abstract

The present work reports a novel approach to enhance the fracture resistance and notch sensitivity of carbon fiber-reinforced polymer composites utilizing additive manufacturing (3-D printing) fabrication. The 3-D printed composites utilize carbon fiber bundles to reinforce nylon/chopped fiber resin in a multilayered structure configuration. Single-edge (60°) notched samples were printed using Mark Two printer. Three reinforcement schemes were designed and used to manufacture the specimens. The focus was placed on selective reinforcement at the crack tip to arrest crack initiation. The mechanical properties, fracture toughness, and fracture behavior of the printed composites were evaluated. It was found that wrapping fiber around the notch effectively blunted the notch and redirected crack propagation away from the notch tip, thereby lengthening the crack path and leading to improved fracture resistance. It was also found that such improvement reaches a saturation level. Excessive notch reinforcement beyond optimal limit can reverse the gains in fracture resistance due to notch-targeted reinforcement. Examination of the fracture surface morphology of the printed composites reveals lack of fusion of the sizing of the individual continuous carbon fiber bundles and the lack of adhesion between the matrix layers (nylon/chopped fiber resin) and the adjacent carbon fiber bundle reinforcement. Damage to the fibers within the carbon bundle was also observed. Thus, a synergetic effect of the carbon fiber bundles reinforcement and the matrix requires more optimization to manufacture carbon-reinforced polymer composites using 3-D printing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call