Abstract

The assessment of fracture toughness (KIC) on fragile materials such as ceramics or composites through conventional methods can be arduous. Recently, an alternative route referred to as the Indentation Fracture technique has been widely accepted with this purpose and extensively reported in literature (Weisbrod & Rittel, 2000; Plaza, 2003; Evans & Charles, 1976; Niihara et al., 1982). Different authors have derived math equations series as to fine tune and match with KIC determination; those equations are based in the lineal mechanical fracture theory (Wang, 1996). The indentation fracture method and its application procedure are described in this chapter, whereas typical problems involved in the test are shown. Al2O3-based composites with different reinforced metals fabricated by both; liquid and solid pressureless sintering of an intensive mechanical mixture of powders were used as studied materials. Ceramic materials have properties of great interest for various structural applications, specifically those that take advantage of their high hardness, chemical and thermal stability in addition to their high stiffness. However, their great fragility has severely limited their applications, although they have developed ceramic with reinforcement materials precisely to increase the toughness of the same (Miranda et al., 2006; Konopka & Szafran, 2006; Marci & Katarzyna, 2007; Travirskya et al., 2003; Sglavo, 1997). One of the macroscopic properties that characterize the fragility of a ceramic is the fracture toughness (KIC). The fracture toughness describes the ease with which propagates a crack or defect in a material. This property can be assessed through various methods such as: Analytical solution, solution by numerical methods (finite element, boundary integral, etc.). Experimental methods such as: complianza, fotoelasticity, strain gauge, etc. and indirect methods such as: propagation of fatigue cracks, indentation, fractography, etc. The choice of method for determining the fracture toughness depends on the availability of time, resources and level of precision required for the application. In practice, measurements of KIC require certain microstructural conditions on the material to allow propagation of cracks through it in a consistent manner. The strength of materials is governed by the known theory of Griffith, which relates the strength (S) with the size of the defect or crack (c) by S = YKIC/c1/2. This expression suggests the need to reduce the grain size and processing defects in the final microstructure to optimize the mechanical performance. Moreover, with increasing KIC, resistance becomes less dependent on the size of the defect, thereby producing a more tolerant material to cracking. Due to high elastic modulus and low values of KIC in brittle materials, achieving in them a stable crack growth is complicated and sometimes it is necessary sophisticated

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call