Abstract

The mechanical property, fracture toughness and fatigue behavior of T7451 Al-Zn-Mg-Cu alloy thick plates in different orientations and with various thicknesses were investigated by means of tensile, fatigue and plain strain fracture toughness testing. And the microstructures and fracture morphologies were analyzed with optical microscopy and scanning electron microscopy. The results showed that the samples in longitudinal (L)-transversal (T) orientation possessed better mechanical property, fracture toughness and fatigue resistance than that in T-L orientation. Fractography and optical microanalysis clearly demonstrated that the feature of recrystallized grains is the decisive factor for this anisotropy. On the other hand, values of strength and fracture toughness decreased with the increase of plate thickness, but their fatigue crack growth rate became slower. Combined with the fractography analysis, the increase of recrystallization degree and the coarser grains in the thicker plate should be the main reason for the detrimental to the strength and toughness properties since the main fracture mechanism changes from ductile transgranular fracture to intergranular failure. However, these coarse recrystallized grains play an advantageous role for fatigue resistance from crack deflection and closure perspectives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.