Abstract

Cellular lightweight concrete (CLC) is increasingly used for low strength non-structural and structural applications. The effects of synthetic fiber reinforcement on the fracture behavior of CLC is investigated. In particular, acoustic emission (AE) technique is employed to study the influence of macro (structural), micro polyolefin synthetic fibers and their combinations on the fracture behavior of CLC beams. Notched fiber reinforced CLC beams were tested to study the crack initiation and propagation characteristics using AE sensors. Different AE parameters are correlated with the crack growth and damage accumulation. An attempt has been made to correlate the crack mouth opening displacement (CMOD) with the number of AE hits. The variation of cumulative acoustic energy release of the cracks is studied with respect to applied load and CMOD. Three dimensional source location of cracks is carried out based on the AE events picked by the sensors bonded to the CLC specimens. The analysis of AE results indicates that the crack source location identification from AE is consistent with the actual crack development. Analysis of AE signals reveal that the CLC matrix cracking produces signals with less number of hits that lie in the notched plane in bending. Moreover, the signals from the post peak regime correspond to more number of hits which tend to be scattered around the plane of notch due to the fiber pull out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.