Abstract

In this work, we attempted to enhance the torsional fracture strength of single crystal silicon (SCS) resonators for micro mirrors application by introducing a 300 nm-thick diamond-like carbon (DLC) coating. The SCS torsional beams of the resonators were 20 μm long, 9 μm wide and 9 μm thick, and fully coated with DLC films using plasma enhanced chemical vapor deposition (PECVD) at three different deposition bias voltages. The resonators were driven by a piezoelectric actuator and their angular amplitude was measured by a custom-made torsional test system. Average nominal torsional fracture strength of DLC coated resonators was 11.1–30.0% higher than that of bare SCS, reaching a value of 2.93 GPa. The torsional fracture strength of resonators exhibited a good agreement with the tensile fracture strength. Deviations in torsional strength were reduced with increasing deposition bias voltage due to the compressive residual stress of DLC films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call