Abstract

Ring-shaped (RS) polymer-bonded magnets were produced from a mixture of an isotropic nanocrystalline Nd-Fe-B powder with a nominal composition of 59.8 wt.% Fe, 29 wt.% Nd, 5 wt.% Zr, 4.8 wt.% Co and 1.4 wt.% B and a variety of epoxy resins as binders, using a compaction-molding technique. The morphology and average particle size of the powders are determined by an SEM. The magnetic properties of the magnets were measured using a permeameter. Magnetic flux on the surface of the magnets was determined by a Gauss meter. The mechanical properties of the RS specimens were determined using a tensile fracture strength (FS) test. The effects of polymer type and amount, hardener amount, applied pressing pressure and curing temperature and time on FS were investigated. The experimental results showed that at optimal conditions of 8 wt.% solid epoxy, 3.5 wt.% solid hardener, a pressing pressure of 900 MPa and a curing time of 8 h at 170 °C, a maximum tensile strength of ~ 36 MPa was achieved. Surface magnetic flux uniformity in optimal mechanical conditions was also found to be optimum at around ± 40 G, which is one of the best flux uniformities in bonded magnets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.