Abstract

We studied the stability of the mechanical properties and the fatigue endurance of Gd-doped ceria (CGO), which is a promising electromechanically active material for microelectromechanical systems (MEMS). Specifically, the fracture strength and long-term operation of plate-type circular (2 mm diameter) thermal actuators made of ≈1.15 μm thick Ce0.95Gd0.05O1.975 (CGO5) were investigated. Excitation voltage of 10 V at the frequency range between 1 and 2.1 MHz induces Joule heating effect that can generate an in-plane strain of ≈0.1 %. The operation temperature ranged from 25 °C to 80 °C and the temperature shift, caused by the AC heating, was about 80 K at 10 V. Critical fracture was found to occur at out-of-plane displacements between ∼35 and ∼42 μm, which corresponds to the average bending stress of ∼44 MPa at the center of the plate. During long-term operation, the actuators exhibit gradual decrease in the response, probably due to contact degradation. However, structural damage or mechanical fatigue was not found even after 107 cycles at a stress level of ∼30 % of the critical fracture strength.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.