Abstract

Groundwater flow and solute transport through fractured rock is highly responsive to the hydraulic anisotropy and heterogeneity that are specific to every major fracture. A major fracture is modeled as the combination of some primal master fractures and several splay fractures that branch out from primal master fractures: step structures (or jog parts). Step structures are commonly observed along a major fracture on various scales. Master fractures were formed and developed by shear movement while some splay fractures were formed by extension normal to their wall. This difference in fracturing process may lead to a permeability difference between master fractures and splay fractures which seems to be one of the major factors controlling flow and solute transport through the fracture networks due to its hydraulic anisotropic and heterogeneous features. This study is composed of two major components: (1) identification and characterization of a step structure from borehole data; (2) evaluation of effect of some idealized step structures on breakthrough curve by numerical simulations. The fracture data of four 1000-m boreholes were used to make clear fracture patterns in the Tono area of Japan. Some major fractures were identified using stereographic projection technique. On the basis of these results, several idealized models of a major fracture having a step was constructed for the numerical study. The obtained results from numerical simulations clearly imply that geometry of step structure plays an important role in flow and transport through the fracture networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.