Abstract

The performance degradation of solid oxide fuel cells (SOFC) is directly related to the damage and fracture of electrode microstructures. In this study, the phase field fracture method is used to simulate the fracture of anode microstructures, and the effects of boundary constraints, thermal load, and Ni phase on the fracture of Ni–YSZ anode microstructures are investigated. Results show that tensile stresses occur in the Ni and YSZ phases whether above or below the reference temperature. The cracks propagate along the direction perpendicular to the first principal stress, showing a brittle fracture characteristic. When the microstructure is cooled, all cracks appear in YSZ phase, and almost all cracks initiate at the lowest point of YSZ–pore concave interface. When the microstructure is heated, the tensile first principal stress induces few cracks at local positions but will not make the cracks propagate continuously. The thermal mismatch between Ni and YSZ is not enough to induce cracks, and the fracture of electrode microstructure is more likely to be caused by external tensile load or the thermal mismatch between anode and electrolyte layers. The presence of Ni increases the stiffness of the microstructure, and solid phase’s disconnection reduces the strength of the microstructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.