Abstract

Roughness scaling laws for intergranular cracks deviate from self-affine (fractal-like) behavior at length scales related to the polycrystalline microstructure. We consider two versions of the same alloy material with many of the same microstructural length scales but differing in their processing history: one conventional and one grain boundary engineered. The engineered material, processed to contain a high fraction of “special” grain boundaries, fails more slowly and more isotropically. We present evidence that the difference is determined by processes related to clusters of twin-related grains, shown through analysis of scales of the fracture roughness measured with confocal microscopy and the special grain boundary network determined by electron backscatter diffraction. Above the cluster scale, the fracture roughness exponents in the two materials are nearly indistinguishable (confirming theoretical predictions); below this scale conventional cracks exhibit correlations indicating consistently weak paths for crack propagation, suggesting percolation of “random” boundaries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call