Abstract

Hazardous failure phenomena such as rock bursts and slabbing failure frequently occur in deep hardrock tunnels, thus understanding the failure phenomena and mechanisms of the stress regime on tunnels is extremely critical. In this study, the tunnel system in a rock mass was physically modelled as a number of scaled openings in rock specimens, and the mechanical behavior of specimens having one to four horseshoe-shaped openings under uniaxial compression were investigated systematically. During the tests, the digital image correlation (DIC) and acoustic emission (AE) techniques were jointly employed to monitor the fracture response of specimens. After which, the stress distributions in the specimens were numerically analyzed and the stress concentration factor on the periphery of the opening was calculated. The results show that the number of openings have a significant impact on the weakening effect of rock mechanical properties. The progressive cracking process of the specimens with openings evolves from first-tensile cracks through second-tensile cracks and spalling cracks to shear cracks, and the crack threshold stresses are measured. Two failure modes are formed: shear failure and shear-tensile failure. According to the stress distribution law around the opening, the crack initiation mechanism can be fully explained. This research provides an insight to failure mechanism of hardrock tunnel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call