Abstract

Molecular simulations are powerful tools for revealing the properties of polymers at the molecular level. In particular, coarse-grained molecular dynamics simulations are useful for elucidating the deformation and fracture processes of polymers. However, in the case of crystalline polymers, it is difficult to reproduce experimentally observed structures and mechanical properties using these models. This review describes our recent investigations into the deformation and fracture processes of crystalline polymers using coarse-grained molecular dynamics simulations. We were able to successfully reproduce the lamellar structure of polyethylene, which is a fundamental structural feature of this polymer, and obtain a stress–strain curve that exhibited good consistency with that observed experimentally. The molecular dynamics simulations revealed that void generation in the amorphous layers was caused by the movement of the chain ends, which is difficult to observe through experiments. The conditions required to reproduce the experimentally observed structure and mechanical properties using molecular simulations are also discussed. In this focus review, our recent investigations into the deformation and fracture processes of crystalline polymers using coarse-grained molecular dynamics simulations are described. The lamellar structure of polyethylene, a fundamental structural feature of this polymer, is successfully reproduced. Then, a stress– strain curve that exhibited good consistency with that observed experimentally is obtained. Molecular simulations are a powerful tool for elucidating the mechanisms of the deformation and fracture processes of crystalline polymers at the molecular level and this review will contribute to the development of this field of research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call