Abstract

Fracture mechanisms of discontinuous carbon-fibre-reinforced glass matrix composites were experimentally studied for specimens with initial damage induced by thermal shock. First, matrix cracking due to thermal shock was observed using both optical microscopy and scanning acoustic microscopy (SAM) to reveal the damage state. Secondly, tensile stress-strain behaviour and acoustic emission during tensile tests were measured for specimens with and without thermal shock. The progress of microscopic damage during tensile loading was also investigated using both replica and in-situ SAM techniques. Finally, macroscopic transient thermal stresses during thermal shock were calculated using finite-element analysis. It is proved that the fracture process of the composite specimen with thermal-shock-induced cracks is different from that of the virgin specimen. This difference in fracture processes is attributed to the difference in the evolution of matrix cracking, which is affected by pre-existing microcracks in the matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.