Abstract

In this paper, the stamping process was employed to fabricate metallic bipolar plates (MBPs). An account of low formability of the commercially pure titanium (CP–Ti), the fracture is the most common defect during its plastic deformation. Consequently, prediction of the fracture onset during the stamping was studied using three ductile fracture criteria including Rice-Tracey, Brozzo, Ayada, and a developed forming limit criteria based on consideration of the material size effect. The damage value in the lateral and central channel was evaluated to determine the critical channel and element. According to the results, the most accurate fracture prediction during stamping of titanium bipolar plates could be obtained via Brozzo ductile fracture criteria with an error rate of 3.68% compared to experiments. Moreover, the strain-based criteria represent higher fracture prediction errors compared to damage criteria. The stress state analysis showed the variation of stress triaxiality during the process leading to less accuracy of the strain-based criteria. According to the results, the damage function of the ductile damage criteria was more reliable for the semi-proportional loading path during the stamping of the titanium bipolar plates which makes them more suitable for accurate fracture prediction during the process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.