Abstract

AbstractFracture properties of model elastomeric networks of polyurethane have been investigated with a double‐edge notch geometry. The networks were synthesized from monodisperse end‐functionalized polypropylene glycol precursors and a trifunctional isocyanate. All reagents were carefully purified and nearly defect‐free ideal networks were prepared at a stoichiometry very close to the theoretical one. Three networks were prepared: an unentangled network of short chains (Mn = 4 kg mol−1), an entangled network of longer chains (Mn = 8 kg mol−1) and a bimodal network with 8 kg mol−1 and 1 kg mol−1 chains. The presence of entanglements was found to increase significantly the toughness of the rubber, in particular at room temperature, relative to the bimodal networks and to the short chains network. Fracture experiments were carried out at different strain rates and temperatures and showed for all three networks a marked decrease in fracture toughness with increasing temperature and decreasing strain rate which mirrored reasonably well the rate and temperature dependence of tan δ, the dissipative factor. However the proportionality factor between tan δ, and GIC was very material dependent and the shift factors obtained for the master curves of the viscoelastic properties could not be used to build fracture energy master curves. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.