Abstract
The roles of specimen thickness and hardening behavior of the material on the ductile tearing resistance of a 6056 aluminum alloy are investigated separately as a function of stress triaxiality, by varying both the heat treatment (overaging or annealing + slow cooling) and the specimen geometry. The fracture path can be slanted or flat. Results show that increasing hardening capability and specimen thickness favors flat fracture. For the overaged material, the energy dissipation rate, measured on Kahn specimens, reaches a maximum value for an intermediate value of thickness (3.2 mm), whereas for the annealed material, a change in the fracture mode (from slanted to flat) induces a continuous increase in toughness with increasing thickness up to 6 mm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.