Abstract
Desiccation cracks compromise soil integrity and weaken its strength, causing a range of detrimental consequences across various domains. Elucidating the cracking mechanism can aid in managing crack propagation and mitigating the associated risks. This study monitored and compared the evolution of crack patterns on the soil surface and fracture morphologies on the soil cross-section during the drying process using a tested soil sample. Multiple fracture morphological features are discerned on the soil cross-section, encompassing initiation points and plumose structures. Soil fracture morphologies are categorized into three cases based on the initiation point's location, referred to as “Top-initiated structure”, “Bottom-initiated structure”, and “Truncated structure”. Experimental results demonstrate that plumose structures result from the division of the crack front under mixed-mode loading. Cracking under mixed-mode I + II loading leads to cross-section tilting, resulting in curved surface cracks. Conversely, cracking under mixed-mode I + III loading causes cross-section twisting, generating hackle lines and step structures. Furthermore, the crack front radiates from the initiation point, creating orthogonal hackle lines. The geometric relationship confirms that the soil fracture morphology is a good indicator of the cracking process, both in laboratory tests and field observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.