Abstract

ABSTRACTIn this study, fracture toughness of North American elk (Cervus elaphus canadensis) antler and bovine femur were measured using four-point bending tests on single-edge notched compact samples (ASTM C1421). Tests were conducted on crack growth directions longitudinal and transverse to the long axis of antler and bone in both dry and hydrated conditions to study the effects of fiber orientation and hydration. Fracture toughness results in the transverse orientation were much higher than that in the longitudinal orientation and increased with degree of hydration for both antler and bovine femur. The fracture toughness of antler was ∼ 50% higher than that of bovine femur. The highest fracture toughness value was obtained from the hydrated antler in the transverse orientation, which reached 10.31 MPa·m1/2 compared to that measured from bovine femur, which was 6.35 MPa·m1/2. The crack propagation and fracture surface were characterized using scanning electron microscopy. Toughening mechanisms, including crack deflection by osteons, uncracked ligament bridging, and microcracks formation, are observed and discussed. Comparisons between antler and bone are made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call