Abstract

The failure of rock in cold regions due to repeated freeze–thaw (F-T) cycles and periodic load-induced fatigue damage presents a significant challenge. This study investigates the evolution of the multi-scale structure of fractured granite under combined freeze–thaw (F-T) cycles and periodic loading and develops a constitutive damage model. The results indicate that after F-T cycles, network cracks develop around pre-existing cracks, accompanied by block-like spalling. After applying the fatigue load, the nuclear magnetic resonance (NMR) T2 spectrum shifts to the right, significantly increasing the amplitude of the third peak. The freeze–thaw process induces a “liquid–solid” phase transition, weakening the original pore structure of the rocks and leading to meso-damage accumulation. The pores in fractured granite progressively enlarge and interconnect, reducing the rock’s load-bearing capacity and fatigue resistance. The combined effects of F-T cycles and periodic loading induce particle movement and alter fracture modes within the rock, subsequently affecting its macro-damage characteristics. The theoretical curves of the constitutive model align with the experimental data. The findings can serve as a theoretical reference for preventing and controlling engineering disasters in fractured rock masses in cold regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.