Abstract

Molecular dynamics (MD) modeling is used to study the fracture toughness and crack propagation path of monolayer molybdenum disulfide (MoS2) sheets under mixed modes I and II loading. Sheets with both initial armchair and zigzag cracks are studied. The MD simulations predict that crack edge chirality, tip configuration and the loading phase angle influence the fracture toughness and crack propagation path of monolayer MoS2 sheets. Furthermore, under all loading conditions, both armchair and zigzag cracks prefer to extend along a zigzag path, which is in agreement with the crack propagation path in graphene. A remarkable out-of-plane buckling can occur during mixed mode loading which can lead to the development of buckling cracks in addition to the propagation of the initial cracks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.