Abstract

ObjectiveA method proposed for determining the fracture toughness (FT) of dental materials involves a ‘roller’ wedging open a V-notch in a cylindrical specimen. There are a number of problems with the design of this test and its mechanical analysis, and thus with the validity of the results obtained, were it to be used. Firstly, friction is ignored in calculating the horizontal wedging force. Secondly, the test specimen does not make use of a pre-crack at the notch tip. The aim of this study was to evaluate the effects of these factors on the FT calculated. MethodsAn analytical solution for the mode-I stress intensity factor (KI) of the compact tension specimen, which bears some similarities, is taken to be applicable. The mechanics of the specimen has been reanalysed, with a finite-element study of the resultant stresses, and compared with the compact-tension test. ResultsThe assumed analytical solution can provide accurate estimates for KI for the V notched specimen. However, the apparent agreement is due to the fortuitous combination of an overestimated horizontal wedging force and an underestimated stress singularity at the crack tip. In any case, ignoring friction will lead to an overestimate of FT. SignificanceIt is concluded that the test as presented is invalid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.