Abstract

In this paper, the boundary element method (BEM) based on the elasticity theory is developed for fracture analysis of cracked thin structures with the relative thickness-to-length ratio in the micro- or nano-scales. A special crack-tip element technique is employed for the direct and accurate calculation of stress intensity factors (SIFs). The nearly singular integrals, which are crucial in applying the BEM for thin-structural problems, are calculated accurately by using a nonlinear coordinate transformation method. The present BEM procedure requires no remeshing procedure regardless of the thickness of thin structure. Promising SIFs results with only a small number of boundary elements can be achieved with the relative thickness of the thin film is as small as 10−9, which is sufficient for modeling most of the thin bodies as used in, for example, smart materials and micro/nano-electro-mechanical systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.