Abstract

This paper is the second of a series of two papers dealing with the determination of the deformability, tensile strength and fracturing of anisotropic rocks by diametral compression (Brazilian test) of discs of rock. It is shown how a new formulation of the Boundary Element Method (BEM), proposed recently by the authors, can be used to determine the stress intensity factors (SIFs) and the fracture toughness of anisotropic rocks from the results of diametral compression tests on initially cracked discs. Crack initiation angles and propagation paths can also be predicted using a numerical procedure based on the BEM and maximum tensile stress criterion. Numerical examples of calculation of mixed mode SIFs are presented for both isotropic and anisotropic media. The calculated SIFs for the special isotropic case are found to be in good agreement with those reported by previous authors. Diametral loading tests were conducted on Cracked Straight Through Brazilian Disc (CSTBD) specimens of a shale in order to evaluate its fracture toughness, the angle of crack initiation and the path of crack propagation. It was found that the numerical simulations of crack initiation and propagation in the CSTBD specimens of the shale were in good agreement with the experimental observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call