Abstract

ObjectiveThis in-vitro study is planned to analyze the effect of different thicknesses of ceramic occlusal veneers and different surface treatments on fracture resistance. Materials and methodsA total of 48 sound mandibular molars are anatomically prepared from the occlusal surface with two different thicknesses (1.0 and 0.5 mm). CAD/CAM zirconia-reinforced glass ceramic blocks (Vita Suprinity) are used for fabricating occlusal veneers. The teeth are randomly divided into two primary groups A and B (n=24) according to occlusal veneer thickness. Each group is subdivided according to surface conditioning into three equal subgroups (n=8)—subgroup HF: etching with hydrofluoric acid and ceramic primer application; subgroup APF: etching with acidulated phosphate fluoride and ceramic primer application; subgroup EP: conditioning with etch and prime only. Dual-cure adhesive resin cement (Multilink Automix) is utilized to adhesively bond the veneers. All specimens are subjected to 240,000 cycles of dynamic load aging prior to the fracture resistance test. The fracture resistance is measured in Newton (N). The Failure mode patterns are analyzed and categorized using a scanning electron microscope (SEM). The results are analyzed using a two-way ANOVA with Bonferroni's Post-Hoc test, followed by a one-way ANOVA for each factor. That is in addition to one-way ANOVA for surface treatment under each thickness, each followed by Bonferroni's Post-Hoc test. Then, a T-test is used to compare the two thicknesses under each surface treatment. All tests are set at 0.05 significance level. ResultsThe two-way ANOVA test revealed that restoration thickness and surface treatment both significantly affect the fracture resistance values (p<0.05). The highest fracture resistance mean (2672±216N) is obtained from HF at 1.0 mm thickness, while the lowest mean (2104±299N) is obtained from APF at 0.5 mm thickness. ConclusionAll test groups, regardless of thickness, demonstrated fracture resistance values that exceeded both normal and parafunctional bite forces. The veneers that bonded after hydrofluoric acid etching followed by ceramic primer application showed more favourable fracture patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call