Abstract
A numerical investigation was made of the relationships between fracture initiation, growth, stress field and boundary conditions. Two-dimensional plane strain continuum models were used in which fractures appeared as zones of strain localization developed through application of a strain softening Mohr–Coulomb constitutive model. R and R′ fractures developed first, followed by Y fractures at larger strains. The models showed that equal development of conjugate R and R′ fractures is easily changed to favor one or the other set by minor variations in model initial conditions. Strength loss in fractures caused stress field rotations in regions bounded by fractures, altering the orientation of subsequent fractures. The amount and sense of stress field rotation is dependent on the strength loss during displacement on the fractures, the orientation of fractures, and on the boundary conditions. Y oriented fractures could be explained on the basis of a Mohr–Coulomb failure criterion provided that stress field rotation is accounted for. Monitoring of fracture slip activity showed that, under conditions of constant boundary velocity, slip was discontinuous in time, alternating on fractures throughout the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.