Abstract

The optical damage threshold of indentation-induced flaws on fused silica surfaces was explored. Mechanical flaws were characterized by laser damage testing, as well as by optical, secondary electron, and photoluminescence microscopy. Localized polishing, chemical leaching, and the control of indentation morphology were used to isolate the structural features that limit optical damage. A thin defect layer on fracture surfaces, including those smaller than the wavelength of visible light, was found to be the dominant source of laser damage initiation during illumination with 355 nm, 3 ns laser pulses. Little evidence was found that either displaced or densified material or fluence intensification plays a significant role in optical damage at fluences >35 J/cm(2). Elimination of the defect layer was shown to increase the overall damage performance of fused silica optics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.