Abstract

A dynamic phase-field fracture finite element model is applied to discretized high-resolution three-dimensional computed tomography images of human trabecular bone to analyse rapid bone fracture. The model is contrasted to quasi-static experimental results and a quasi-static phase-field finite element model. The experiment revealed complex stepwise crack evolution with multiple crack fronts, and crack arrests, as the global tensile displacement load was incrementally increased. The quasi-static phase-field fracture model captures the fractures in the experiment reasonably well, and the dynamic model converges towards the quasi-static model when mechanically loaded at low rates. At higher load rates, i.e., at larger impulses, inertia effects significantly contribute to an increased initial global stiffness, higher peak forces and a larger number of cracks spread over a larger volume. Since the fracture process clearly is different at large impulses compared to small impulses, it is concluded that dynamic fracture models are necessary when simulating rapid bone fracture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call