Abstract

During development and in adult physiology, living tissues are continuously subjected to mechanical stresses originating either from cellular processes intrinsic to the tissue or from external forces. As a consequence, rupture is a constant risk and can arise as a result of excessive stresses or because of tissue weakening through genetic abnormalities or pathologies. Tissue fracture is a multiscale process involving the unzipping of intercellular adhesions at the molecular scale in response to stresses arising at the tissue or cellular scale that are transmitted to adhesion complexes via the cytoskeleton. In this review we detail experimental characterization and theoretical approaches for understanding the fracture of living tissues at the tissue, cellular, and molecular scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.