Abstract

Fracture in equiaxed two phase alloys containing isolated elastic particles has been analyzed from the viewpoint of a recently proposed model for fracture initiation and propagation in such materials. This model predicts fracture toughness parameters in terms of the microstructural geometry, relative phase volume fractions, and tensile properties of the materials. Predictions of the model are tested experimentally for two phase Co-CoAl alloys over a wide range of compositions, and the results indicate good agreement between predicted and observed fracture toughnesses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.