Abstract

The identification of reservoir fractures is essential as it is an important factor in the design of a field development plan, which in turn affects the efficiency of hydrocarbon production. Water flooding and water channeling are serious due to the lack of objective understanding of the fracture development pattern in the tight oil reservoirs in the Triassic Change 6 member of Y well area, Ordos Basin, China. In this paper, we observed 104.6 m cores from 20 wells with a number of 150 fractures and an outcrop profile, then analyzed the main controlling factors for core fracture development, and finally established a fracture prediction method using conventional logging data. The results indicate that high-angle fractures accounted for 73.20%, fracture orientations were nearly east–west, fracture spacing between 0–10 cm accounted for 80.51%, fracture openings between 0–0.13 mm accounted for 89.27%, fracture down-cutting depths between 0–20 cm accounted for 80%, and 80.81% was not filled. In addition, we found that thin beds and fine sandstones are prone to develop fractures; Finally, our modified curve rate method was an effective method for fracture prediction. We conclude that fractures have the characteristics of high angle, small spacing, small opening, small down-cutting depth, and less filling. The modified curve change rate method is suitable for fracture prediction in tight sandstone reservoirs in the Triassic Change 6 member of the Y well area, Ordos Basin, China.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call