Abstract
The fracture energy of a porous silicon nitride with aligned fibrous grains was investigated, using a chevron‐notched‐beam technique. A crack was constrained to propagate normal to the grain alignment. The obtained fracture energy was ∼500 J/m2, which was ∼7 times larger than that of a dense silicon nitride with randomly oriented fibrous grains. The large fracture energy was attributable primarily to the sliding resistance associated with interlocking grains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of the American Ceramic Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.