Abstract

The fracture energy Gf can be determined following a RILEM recommendation. However, it has been found that fracture energy depends on both size and geometry of the test specimen. The underlying fictitious crack model postulates that fracture energy, tensile strength, the critical opening of the fictitious crack, and the shape of the softening curve (softening factor) are constants for a given type of concrete. Here it is shown that a local fracture energy ccan be introduced. This local fracture energy varies with the width of the fracture process zone. As the crack approaches the back end of a specimen the fracture process zone becomes more and more confined and hence the local fracture energy decreases. Theoretical predictions are compared with experimental results obtained with the wedge splitting technique described earlier. It is shown that a local variation of the fracture energy leads to a size dependence of the global specific fracture energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.