Abstract
ABSTRACTThe fracture energy and the critical strength of glassy polymers with molecular weight larger than the critical value for the onset of chain entanglements are proportional to the number of chain segments entangled about a unit plane. A new molecular model is presented to calculate the crossing density of these chain segments when the segment length is a stochastic variable. The crossing density depends on the mesh size of the entanglement network and the number of entanglement network strands per unit volume. Theoretical predictions of the variation of the fracture energy and strength with the molecular weight are compared with experimental results for various glassy polymers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.