Abstract

Earthquake cycles along a pure strike-slip fault were numerically simulated using a rate- and state-dependent friction law to obtain the fracture energies at the rupture nucleation points. In the model, deep aseismic slip is imposed on the fault, which generates recurrent earthquakes in the shallower velocity-weakening friction region. The fracture energy at the rupture nucleation point for each simulated earthquake was calculated using the relation between shear stress and slip, which indicates slip-weakening behavior. The simulation results show that the relation between the fracture energy at the nucleation point and other source parameters is consistent with a theoretical approach based on fracture mechanics, in that an earthquake occurs when the energy release rate at the tip of the aseismic slip zone first exceeds the fracture energy. Because the energy release rate is proportional to the square of the amount of deep aseismic slip during the interseismic period, which can be estimated from the recurrence interval of earthquakes and the deep aseismic slip rate, the fracture energies for strike-slip earthquakes can be calculated. Using this result, we estimated the fracture energies at the nucleation points of large earthquakes on selected segments of the Xianshuihe fault, southwestern China. We find that the estimated fracture energies at the rupture nucleation points are generally smaller than the values of average fracture energy for developed ruptures as estimated in previous studies, suggesting that the fracture energy tends to increase with the rupture propagation distance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call