Abstract
Abstract Isotopic and fluid inclusion analyses of veins and host rocks constrain the compositions, temperatures and sources of palaeofluids along the La Popa salt weld. Most veins formed after the salt was evacuated from the precursor salt wall; veins are generally more abundant on the downthrown side of the weld and near a significant bend in the trace of the weld. The spatial distribution of fluid types and temperatures suggests the weld served as a vertical fluid conduit and a horizontal baffle. Stable isotopes indicate there was significant fluid–rock interaction and little vertical fluid communication between rock units in areas away from the weld. Fluid temperatures along the weld ranged from 84 to 207 °C, salinities ranged from 4 to 25 wt% NaCl equiv. and methane was abundant in the weld zone and on the downthrown side of the weld. Strontium isotopes suggest that some of the vein-forming fluids were derived from the evaporites that once occupied the weld. Our results suggest the sealing potential of similar welds may be related to the presence of abrupt changes in weld geometry such as cusps or bends, the amount of shortening across the weld and the amount of vertical displacement across the weld.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.