Abstract
ABSTRACT Fracture treatment optimization techniques have been developed using Long-Spaced-Digital-Sonic (LSDS) log, pumpin-flowback, mini-frac, and downhole treating pressure data. These analysis techniques have been successfully applied in massive hydraulic fracturing (MHF) of "tight gas" wells. Massive hydraulic fracture stimulations have been used to make many tight gas reservoirs commercially attractive. However, studies have shown that short highly conductive fractures are optimum for the successful stimulation of wells in moderate permeability reservoirs. As a result, the ability to design and place optimal fractures in these reservoirs is critical. This paper illustrates the application of fracture analysis techniques to a moderate permeability multi-layered reservoir. These techniques were used to identify large zonal variations in rock properties and pore pressure which result from the complex geology. The inclusion of geologic factors in fracture treatment design allowed the placement of short highly conductive fractures which were used to improve injectivity and vertical sweep, and therefore, ultimate recovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.