Abstract
A testing technique based on cross-sectional nanoindentation has been used to assess the mechanical reliability of interconnect structures. A Berkovich indenter was used to initiate fracture in a silicon substrate and cracks propagated through the structure. To better control crack growth and to convert the problem into two dimensions, a trench parallel to the indentation surface was previously machined using a focused ion beam. The crack lengths obtained for different material systems in the interconnect structure correlate well with the fracture energies measured for the same materials in blanket films. Finite element model simulations incorporating cohesive elements have been used to model the fracture processes and to explain the different cracking behaviour observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.