Abstract

Abstract This paper investigates and compares the experimental results of fracture characteristics in various polypropylene fiber-reinforced concretes (high strength concrete, lightweight concrete, and engineered cementitious composite) on 90 three-point bend (notched and un-notched) beams. Five widely used fracture mechanics testing methods, such as work of fracture method, stress-displacement curve method, size effect method, J integral method, and ASTM E399, were used to investigate the fracture behavior. Results have demonstrated that fracture energy and fracture toughness improved as the dosage of polypropylene fibers increased in concretes. However, this improvement was different in concretes owing to various results of fracture mechanics testing methods and different properties of each concrete. Aggregates played significant role in the performance of polypropylene fibers on the fracture behavior of concretes. Among testing methods, the ASTM E399 showed the lowest values for the fracture toughness of concretes. Both work of fracture and stress-displacement curve methods exhibited appropriate results for the fracture energy of polypropylene fiber-reinforced concrete composites. The accuracy of size effect method was acceptable for determining size-independent fracture parameters of plain high strength and lightweight concretes. Furthermore, the J integral method showed more relevant results for the fracture toughness of polypropylene fiber-reinforced engineered cementitious composite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.