Abstract
Geopolymers have several applications and concrete is one of the materials that can be produced with geopolymer as binder. Since industrial byproducts/wastes such as fly ash, iron slag, micronized biomass silica, silica fume, red mud, etc. can be used as a binder instead of Portland cement, geopolymer concrete (GPC) has generated lot of interest among the scientific and engineering community. This has also resulted in reduced carbon footprint of concrete and an effective method of disposing industrial waste. In this study GPC with a blend of class-f fly ash and ground granulated blast furnace slag as binder has been developed, and its flexural and fracture characteristics have been studied. The GPC developed has a 28-day compressive strength in the range 40-50 MPa. Incorporation of steel fibres resulted in increased flexural strength, enhanced fracture properties and ductility. The residual strength of steel fibre reinforced GPC was also determined in the study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.