Abstract

The fracture behavior of all-PP composites was studied under quasi-static loading conditions. Fracture toughness was evaluated by means of different fracture mechanics approaches depending on materials’ behavior. Composites consolidated at low temperature exhibited pop-in features and the failure occurs typically by delamination and tape stretching and fracture. With increasing consolidation quality – i.e., with increasing processing temperature – the delamination became less pronounced, and so the tape stretching occurred, before the specimens break. In composites consolidated at the highest temperature investigated (190°C), the laminate-like structure typical of self-reinforced composites produced according to film-stacking method was lost. Accordingly, composites behave as if they were only α-PP and β-PP matrices: α-rPP exhibited typical brittle fracture of α-PP, while β-rPP exhibited the stable behavior with fully yielded ligament before crack propagation commonly observed for β-PP. In general, stress–strain behavior changed from stable to unstable and fracture toughness strongly decreased as consolidation quality increased. Based on these results and previous findings, it can be concluded that the properties of self-reinforced PP composites can be tailored for a given application through the quality of consolidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.