Abstract

The fracture behavior was investigated of a bulk nanostructured 316L austenitic stainless steel with embedded nanotwin bundles incorporated by dynamic plastic deformation. The nanotwin bundles were demonstrated to be critical to strengthen and toughen the as-deformed samples with mixed microstructures of nano-grains and nano-twins. With increment in strength, the fracture toughness decreases due to the generation of increasingly more nano-grains. Additional controlled thermal annealing that makes the nano-grains recover or recrystallize leads to reduced strengths but more remarkably improved fracture toughness. The enhanced strength−fracture toughness synergy can be attributed to the nanotwin bundles that constrict the damage development in the matrix of either nano-grains or recrystallized grains, and that resist crack propagation via acting as ductile crack bridging ligaments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.