Abstract

Polymer concrete, is a composite material formed by polymerizing a monomer and an aggregate mixture. The polymerized monomer acts as the binder for the aggregates. Initiators and promoters are added to the resin prior to its mixing with the inorganic aggregates to initiate the curing reaction. Fracture behavior of chopped glass fiber reinforced polymer concrete was investigated in this study using the two-parameter model, according to RILEM recommendations. This is a direct method to calculate the flexural modulus of elasticity and two size-independent fracture parameters, i.e., the critical stress intensity factor, K IC, and the crack tip opening displacement (CTOD). Beams with a central notch were tested under three-point bending using an attached clip gauge to measure the CTOD. The chopped glass fibers used were 6 and 25 mm long. The fibers were also pre-treated to improve the adhesion between fibers and resin and fracture properties. In general, addition of fibers increases flexural strength and fracture properties of polymer concrete. The modulus of elasticity of glass fiber polymer concrete can increase by up to 39%. The object of this research work is to evaluate the influence of fibers on the mechanical and fracture properties of polymer concrete. This paper is a new contribution to a research field with a very small number of publications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.