Abstract

This paper describes the results of pressure vessel fracture test which called West Jefferson and/or partial gas burst testing using Grade API X65 linepipe steel with high Charpy energy that exhibits inverse facture in the Drop Weight Tear Test (DWTT). A series of pressure vessel fracture tests which is as part of an ongoing effort by the High-strength Line Pipe committee (HLP) of the Iron and Steel Institute of Japan (ISIJ) was carried out at low temperature in order to investigate brittle-to-ductile transition behavior and to compare to DWTT fracture behavior. Two different materials on Fracture Appearance Transition Temperature (FATT) property were used in these tests. One is −60 degree C and the other is −25 to −30 degree C which is defined as 85 % shear area fraction (SA) in the standard pressed notch DWTT (PN-DWTT). The dimensions of the test pipes were 24inches (609.6 mm) in outside diameter (OD), 19.1 mm in wall thickness (WT). In each test, the test pipe is cooled by using liquid nitrogen in the cooling baths. Two cooling baths are set up separately on the two sides of the test vessel, making it possible to obtain fracture behaviors under two different test temperatures in one burst test. The test vessel was also instrumented with pressure transducers, thermocouples and timing wires to obtain the pressure at the fracture onset, temperature and crack propagation velocity, respectively. Some informative observations to discuss appropriate evaluation method for material resistance to brittle facture propagation for high toughness linepipe materials are obtained in the test. When the pipe burst test temperatures are higher than the PN-DWTT transition temperature, ductile cracks were initiated from the initial notch and propagated with short distance in ductile manner. When the pipe burst test temperatures were lower than the PN-DWTT transition temperature, brittle cracks were initiated from the initial notch and propagated through cooling bath. However, the initiated ductile crack at lower than the transition temperature was not changed to brittle manner. This means inverse facture occurred in the PN-DWTT is a particular problem caused by the API DWTT testing method. Furthermore, results for the pipes tested indicated that inverse facture occurred in PN-DWTT at the temperature above the 85 % FATT may not affect the arrestability against the brittle fracture propagation and it is closely related with the location of brittle fracture initiation origin in the fracture appearance of PN-DWTT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.