Abstract

The stricter environmental, health, and safety regulations address the harmful effects of lead and provide the driving force for the development of lead-free brass alloys. Conventional leaded brass rods are widely used in several manufacturing sectors (i.e., fabrication of hydraulic components, fittings, valves, etc.) due to their superior workability in extrusion and drawing as well as their superior machinability. As machinability performance involves shear and dynamic fracture processes evolved under high strain-rate conditions, the understanding of the mechanical behavior/microstructure interaction is critical in order to successfully tailor candidate lead-free alloys for improved machinability without compromising the reliability of manufactured components. In this work, the mechanical behavior under static and dynamic loading of three lead-free brass alloys (CW510L-CW511L-C27450) in comparison to a conventional leaded brass alloy (CW614N) was studied. The fractographic evaluation of the texture of conjugate fracture surfaces was performed to identify the involved fracture mechanisms and their relation to the alloy microstructure. It was shown that the CW510L lead-free brass alloy is a potential candidate in replacing conventional CW614N leaded brass, combining high tensile strength and fracture toughness, due to the prevalence of the β-intermetallic phase in the alloy microstructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.