Abstract
Two fracture criteria are proposed and applied to blunt-notched components made of brittle materials loaded under mixed mode; the former is based on the averaged strain energy density over a given control volume, the latter on the cohesive crack zone model. In both instances use of the equivalent local mode I hypothesis is made. Only two material properties are needed: the ultimate tensile strength and the fracture toughness. Numerical predictions of rupture loads from the two criteria are compared with experimental measurements from more than 160 static tests with notched beams. The samples are made of PMMA and tested at − 60°C to assure a bulk behaviour almost linear elastic up to rupture. Notch root radii range from 0.2 to 4.0 mm and load mixicity varies from pure mode I to a prevailing mode II. The good agreement between theory and experimental results adds further confidence to the proposed fracture criteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.