Abstract

Dense suspensions exhibit the remarkable ability to switch dynamically and reversibly from a fluid-like to a solid-like, shear-jammed (SJ) state. Here, we show how this transition has important implications for the propensity for forming fractures. We inject air into bulk dense cornstarch suspensions and visualize the air invasion into the opaque material using time-resolved X-ray radiography. For suspensions with cornstarch mass fractions high enough to exhibit discontinuous shear thickening and shear jamming, we show that air injection leads to fractures in the material. For high mass fractions, these fractures grow quasistatically as rough cavities with fractured interfaces. For lower mass fractions, remarkably, the fractures can relax to smooth bubbles that then rise under buoyancy. We show that the onset of the relaxation occurs as the shear rate induced by the air cavity growth decreases below the critical shear rate denoting the onset of discontinuous shear thickening, which reveals a structural signature of the SJ state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.