Abstract

A global–local multiscale finite element method (FEM) is proposed to study the interaction of nanotubes and matrix at the nanoscale near a crack tip. A 3D FE model of a representative volume element (RVE) in crack tip is built. The effects of the length and chirality of single walled carbon nanotube (SWCNT) in a polymer matrix on the fracture behavior were studied in the presence of van der Waals (vdW) interaction as inter-phase region. Detailed results show that with increasing the weight percentage of SWCNT, fracture toughness improves. Three situations of nanotube directions with respect to crack are considered. Results show that bridging condition has minimum stress intensity factor. In addition, it can be seen that the crack resistance improves by increasing the length and chirality for all kinds of nanotubes. Finally, epoxy/SWCNT 10wt.% has lower stress intensity factor compared to epoxy/halloysite 10wt.% in similar loading state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.